Posts Tagged ‘indian airforce’

   The Sukhoi/HAL Fifth Generation Fighter Aircraft (FGFA) is a fifth-generation fighter being developed by India and Russia. It is a derivative project from the PAK FA (T-50 is the prototype) being developed for the Indian Air Force (FGFA is the official designation for the Indian version).

Two separate prototypes will be developed, one by Russia and a separate one by India. According to HAL chairman A.K. Baweja (speaking shortly after the India-Russia Inter-Governmental Committee meeting on 18 September 2008), the Russian version of the aircraft will be a single-seater, the Indian version will be a twin seater, analogous to the Su-30MKI which is a twin seat variant of the baseline Su-27. The plane is scheduled to enter series production in 2019.

Development

India will eventually spend over $25 billion to induct 166 PAK FA and 48 FGFA advanced stealth fighter aircraft. This will be in addition to the huge investments to be made in co-developing FGFA, as with the infrastructure required to base, operate and maintain such jets in India. IAF’s Air Chief Marshal Naik said that the FGFA will be a swing-role fighter with advanced avionics, super cruise, stealth to increase survivability, enhanced lethality, 360 degree situational awareness, smart weapons, data-links, high-end mission computers and the like. Along with 126 medium multi-role combat aircraft, which India plans to acquire, 270 Sukhoi-30MKIs contracted from Russia, and 220 indigenous Tejas Light Combat Aircraft, the FGFA will be the mainstay of India’s air combat fleet for the foreseeable future. This, in addition to the remaining 50 odd Mirage 2000 fighters, 61 MIG-29 SMT, and the 125 MIG-21 Bison operational till 2017, will help the IAF to reach the sanctioned strength of 44 squadrons.

The joint-venture borrows heavily from the success of the Brahmos project. Russia and India had agreed in early 2007 to jointly study and develop a Fifth Generation Fighter Aircraft Programme (FGFA). On October 27, 2007, Asia Times quoted Sukhoi’s director, Mikhail Pogosyan, “We will share the funding, engineering and intellectual property in a 50-50 proportion.” The Indian version, according to the deal, will be different from the Russian version and specific to Indian requirements. While the Russian version will be a single-pilot fighter, the Indian variant will have single and twin-seat configuration based on its operational doctrine which calls for greater radius of combat operations. The wings and control surfaces need to be reworked for the FGFA. Although, development work has yet to begin, the Russian side has expressed optimism that a test article will be ready for its maiden flight by 2009, one year after PAK FA scheduled maiden flight and induction into service by 2015.

By February 2009, as per Sukhoi General Director Mikhail Pogosyan, India will initially get the same PAK FA fighter of Russia and the only difference will be the software.

In 2011, it was reported that IAF will induct 148 single seat as well as 66 dual seat variants of the FGFA. IAF plans to induct the first lot of aircraft by 2017.

Design

Although there is no reliable information about the PAK FA and FGFA specifications yet, it is known from interviews with people in the Russian Air Force that it will be stealthy, have the ability to supercruise, be outfitted with the next generation of air-to-air, air-to-surface, and air-to-ship missiles, and incorporate an AESA radar. The FGFA will use on its first flights 2 Saturn 117S engines (about 14.5 ton thrust each). The 117S is an advanced version of the AL-31F, but built with the experience gained in the AL-41F program. The AL-41F powered the Mikoyan MFI fighter (Mikoyan Project 1.44). Later versions of the PAK FA will use a completely new engine (17.5 ton thrust each), developed by NPO Saturn or FGUP MMPP Salyut.

Three Russian companies will compete to provide the engines with the final version to be delivered in 2015-2016.

HAL negotiated successfully to get a 25 per cent share of design and development work in the FGFA programme. HAL’s work share will include critical software including the mission computer, navigation systems, most of the cockpit displays, the counter measure dispensing (CMD) systems and modifying Sukhoi’s single-seat prototype into the twin-seat fighter as per the requirement of the Indian Air Force (IAF).

Russian expertise in titanium structures will be complemented by India’s experience in composites like in the fuselage. A total of 500 aircraft are planned with option for further aircraft. Russian Air Force will have 200 single seated and 50 twin-seated PAK FAs while Indian Air Force will get 166 single seated and 48 twin-seated FGFAs. At this stage, the Sukhoi holding is expected to carry out 80% of the work involved. Under the project terms, single-seat fighters will be assembled in Russia, while Hindustan Aeronautics will assemble two-seaters.

According to HAL chairman A.K. Baweja on 16 September 2008, HAL will be contributing largely to composites, cockpits and avionics. HAL is working to enter into a joint development mechanism with Russia for the evolution of the FGFA engine as an upward derivative of the AL-37. Speaking to Flight magazine, United Aircraft chief Mikhail Pogosyan said India is giving engineering inputs covering latest airframe design, Hi-Tech software development and other systems.

PAK FA and FGFA

The difference between PAK FA and the FGFA will be similar to that between Su-30M and Su-30MKI. Su-30M is a standard Russian version of a plane, whereas the Su-30MKI (MKI stands for “Modernizirovannyi Kommercheskiy Indiski” meaning “Modernized Commercial India”) was jointly-developed with India’s Hindustan Aeronautics Limited for the Indian Air Force. The Su-30MKI includes 2.5D Thrust Vectoring Control (TVC) and canards. It is equipped with a multi-national avionics complex sourced from India, Israel, Russia and France. Further the FGFA will be predominantly using weapons of Indian origin such as Astra, a Beyond Visual Range missile (BVR) being developed by India, although in keeping with the Russian BVR doctrine of using a vast variety of different missiles for versatility and unpredictability to countermeasures, it can be expected to have compatibility with many different missile types. Ashok Baweja stated that “The Indian FGFA is significantly different from the Russian PAK FA because a second pilot means the addition of another dimension, development of wings and control surfaces.”

The FGFA may also include systems developed by third parties.

The completed joint Indian/Russian versions of the single seat or two seat fighters will differ from the current flying prototypes through the addition of stealth, supercruise, sensors, networking, and combat avionics for a total of 43 improvements.

Specifications (PAK FA and FGFA – projected)

 characteristics

  • Crew: 2 (pilot)
  • Length: 22.6 m ()
  • Wingspan: 14.2 m (46 ft 7 in)
  • Height: 5.9 m ()
  • Wing area: 78.8 m² (848 ft²)
  • Empty weight: 18,500 kg (40,786 lb)
  • Loaded weight: 26,000 kg (57,320 lb)
  • Useful load: 7,500 kg (16,535 lb)
  • Max. takeoff weight: 34,000 kg ()
  • Powerplant: 2 × Saturn-Lyulka AL-41F turbofan
    • Dry thrust: 96.1 kN (9,800 kgf, 21,605 lbf) each
    • Thrust with afterburner: 152 kN (15,500 kgf, 34,172 lbf) each

Performance

  • Maximum speed: 2,100 – 2,500 km/h (Mach 2+)  (1,305 mph+)
  • g-limits: (10-11 g)
  • Cruise speed: 1,850 – 2,100 km/h (1,150 – 1,300 mph)
  • Combat radius: 1,500 km  ()
  • Ferry range: 5,500 km (3,400 mi)
  • Service ceiling: 20,000 m (65,617 ft)
  • Rate of climb: 350 m/s (68,898 ft/min)
  • Wing loading: 330 (normal) – 470 (maximum) kg/m2 (67 (normal) – 96 (maximum) lb/ft2)
  • Thrust/weight: 1.19
  • Runway: 350 m (1,148 ft)
  • Endurance: 3.3 hrs (198 mins)

Armament

  • Guns: 2× 30 mm internal cannon
  • Hardpoints: 16 total, 8 internal, 8 on wings.

Avionics

  • Radar: N050 BRLS AESA/PESA Radar (Enhancement of IRBIS-E) on SU-35
    • Frequency: X (8 – 12 GHz)
    • Diameter: 0.7 m (2 ft 4 in)
    • Targets: 32 tracked, 8 engaged
    • Range: > 400 km (248 mi)
      • EPR: 3 m² (32.3 ft²) at 400 km (248 mi)
      • RCS: 3 m ² to 400 km, 1 m ² to 300 km, 0.5 m ² to 240 km, 0.1m ² to 165 km, 0.01M ² to 90 km.
      • Azimuth: 240 ° (± 120 °)
    • Power: 5,000 W
    • Weight: 65 to 80 kg (143 to 176 lb)                                                                                                                                                                                                                                                                                                                                                  courtesy :- wikipedia.org
Advertisements
 ADVANCED MEDIUM COMBAT AIRCRAFT
Role Stealth air superiority and multirole fighter
National origin India
Manufacturer Hindustan Aeronautics Limited
Designer Aeronautical Development Agency
First flight 2015
Introduction 2018
Status Under development
 users Indian Air Force
Indian Navy

The Advanced Medium Combat Aircraft (AMCA), formerly known as the Medium Combat Aircraft (MCA), is a single-seat, twin-enginefifth-generation stealth multirole fighter being developed by India. It will complement the HAL Tejas, the Sukhoi/HAL FGFA, the Sukhoi Su-30MKI and the Dassault Rafale, which emerged as the lowest bidder in the MMRCA tender of the Indian Air Force. Unofficial design work on the AMCA has been started. A naval version is confirmed as Indian Navy also contributed to the funding.

In August 2006, India’s then defence minister Pranab Mukherjee announced in Parliament that the government is evaluating experiences gained from the Tejas programme for the MCA.

Development

In October 2008, the Indian Air Force asked the Aeronautical Development Agency (ADA) to prepare a detailed project report on the development of a Medium Combat Aircraft (MCA) incorporating stealth features.

In February 2009, ADA director P.S Subramanyam said at a Aero-India 2009 seminar, that they are working closely with Indian Air Forceto develop a Medium Combat Aircraft. He added that according to the specification provided by the Indian Air Force, it would likely be a twenty ton aircraft powered by two GTX Kaveri engines.

In April 2010, the Indian Air Force issued the Air Staff requirements (ASR) for the AMCA which placed the aircraft in the twenty five ton category.

Design

The AMCA will be designed with a very small radar cross-section and will also feature serpentine shaped air-intakes, internal weapons and the use of composites and other materials.

It will be a twin-engined design using the GTX Kaveri engine with thrust vectoring with the possibility of giving the aircraft supercruise capabilities. A wind-tunnel testing model of the MCA airframe was seen at Aero-India 2009.

As well as advanced sensors the aircraft will be equipped with missiles like DRDO Astra and other advanced missiles, stand-off weapons and precision weapons. The aircraft will have the capability to deploy Precision Guided Munitions. The aircraft will feature extended detection range and targeting range with the ability to release weapons at supersonic speeds. The aircraft’s avionics suite will include AESA radar, IRST and appropriate electronic warfare systems and all aspect missile warning suite.

As of August 2011, the aircraft is in its preliminary design phase. The final design is expected to be shown to the air force by 2012, after which full scale development on the aircraft may start.

DRDO AEW&CS
Role Airborne early warning and control
Manufacturer Embraer (platform)
DRDO’s Bangalore-based Centre for Airborne Systems (CABS) (radar)
First flight December 6, 2011
Introduction 2014-2015
Status Under development
Primary user Indian Air Force
Developed from Embraer ERJ 145

The Airborne Early Warning and Control System (AEWACS) is a project of India’s Defence Research & Development                                                                                                                                                                                                                                                                                  Organization to develop an AWACS system for the Indian Air Force.

Program details

In 2003, the Indian Air Force (IAF) and Defence Research and Development Organisation (DRDO) carried out a joint study of the system-level requirements and feasibility of development for an Airborne Early Warning and Control (AEWAC) system. The government then approved the project for the development of the AEWAC system by DRDO.

Primary responsibility for the project was with DRDO’s Bangalore-based Centre for Airborne Systems (CABS), which led the design, system integration and testing of the system. LRDE was responsible for the design of the radar array. Defence Electronics Application Laboratory, based in Dehradun, was responsible for the Data Link and Communication Systems for AEW&CS.

The DRDO AEWACS program aims to deliver three radar-equipped surveillance aircraft to the Indian Air Force. The aircraft platform selected was the Embraer ERJ 145. Three ERJ 145 were procured from Embraer at a cost of US $ 300 Million, including the contracted modifications to the airframe. The project goal was to deploy these AEW&C aircraft by 2013.

India’s sole previous effort to develop an AEWAC system was the Airborne Surveillance Platform, but the program, codenamed Airavat, was ended after the only testbed crashed.

The AEW&C project aimed to supplement the larger and more capable EL/W-2090 AWACS acquired by the IAF from Israel. Three EL/W-2090 systems have been ordered, with follow-on orders of 3 more expected in 2010.

Apart from providing the IAF with a cheaper and hence, more flexible AEW&C platform as a backup to its more capable EL/W-2090 class systems, the DRDO AEW&C project aimed to develop the domestic ability to design and operationalize airborne surveillance platforms.

The delivery of six additional systems ordered in October 2010 is to begin from 2015. In June 2010, it was reported that the Indian Air Force is said to be looking at acquiring up to 20 additional systems, in addition to the existing systems on order.

STATUS:-

The first fully modified EMB-145i Aircraft with the antenna and its electronic payload made its maiden flight on December 6, 2011 at Embraer facilities at Sao Jose dos Campos in Brazil with about 1000 Mission System Components provided by CABS, DRDO. These included the critical item – AESA (Active Electronic Scanning Antenna) Radar Antenna developed by DRDO and certified from ANAC, International FAR Certification Agency. at Sao Jose dos Campos in Brazil. Some of the sensitive advanced systems were replaced with dummy equipment of equivalent size and weight. These were to be integrated later in India following flight certification. A two year certification period is expected. DRDO is expected to receive the next two aircraft platforms to start integration by mid-2012.

“The flight is a major milestone towards realizing the dream of Indigenous Airborne Early Warning and Control System, which will put India into a Select Club of Countries” said SA to RM congratulating DRDO Scientists and M/s Embraer Engineers on this achievement.

Maiden flight of the second fully modified aircraft for the indigenously developed Indian Airborne Early Warning and Control System (AEW&C) was held at 1930 IST on 4th April 2012 at the San Jose dos Campos in Brazil. The necessary Mission systems & components including the dummy AAAU (Active Antena Array Unit) are successfully fitted onboard Embraer EMB 145I aircraft.

Capabilities

The AEWACS aircraft will have a locally developed AESA primary radar with IFF. The system will also have ESM (Electronic Support Measures) and CSM (Communications Support Measures) ability. Datalinks to network the AEWACS with fighters, and ground based control systems will also be provided, as will be the SATCOM (Satellite Communication System). The aircraft will also have a comprehensive self defence suite. The avionics suite will be linked via a datahandling system, controlled by Mission computers.

DRDO’s public overview of the AEWACS aircraft stated:

  • The Radar will have an extended range mode against fighter aircraft, and will consist of two back to back AESA arrays, with an additional dedicated IFF array.
  • The ESM system will be able to track sources with a directional accuracy of 2 deg. RMS and a frequency accuracy of 1 MHz.
  • The ESM system will have complete 360 degree coverage in azimuth and have a database of up to 3000 emitters against which threats will be scanned.
  • Communication Support Measure system will analyse and record intercepted communications both inflight and post flight.
  • Self Protection Suite will have a passive Missile Approach Warning System, a Radar Warning Receiver and countermeasures dispensers. The SPS will be integrated with the ESM & CSM suite.
  • The aircraft will support Inflight refuelling.
  • The aircraft will have SATCOM, and datalinks to pass on ESM, CSM and radar data to ground stations and datalinks to pass on target information to fighters. More than 40 other aircraft will be datalinked together by the AEW&C aircraft.                                                                               courtesy : wikipedia.org