Posts Tagged ‘India’

BOEING P-8I NEPTUNE [K65298] 03The Boeing P-8 Poseidon (ALSO modified as neptune for indian navy) (formerly the Multimission Maritime Aircraft or MMA) is a military aircraft currently being developed for the United States Navy (USN). The aircraft is being developed by Boeing Defense, Space & Security, modified from the 737-800.

The P-8 is intended to conduct anti-submarine warfare (ASW) and shipping interdiction and to engage in an electronic intelligence (ELINT) role. This will involve carrying torpedoes, depth charges, SLAM-ER anti-ship missiles, and other weapons. It will also be able to drop and monitor sonobuoys. It is designed to operate in conjunction with the Broad Area Maritime Surveillance unmanned aerial vehicle. The P-8 has also been ordered by the Indian Navy.

Derivatives

Boeing approached the U.S. Air Force in 2010 about replacing the E-8C Joint STARS fleet with a modified version of the P-8 at the same cost Northrop Grumman proposed for re-engining and upgrading the E-8s. The proposed version is named P-8 Airborne Ground Surveillance (AGS) and would integrate an active electronically scanned array (AESA) radar, and have ground moving target indicator (GMTI) and synthetic aperture radar (SAR) capabilities.

The main distinguishing feature of the P-8 AGS is pod-mounted radar, fixed to the lower centerline of the fuselage; the pod is lowered so the engine nacelles do not interrupt the radar’s line of sight. Two aft ventral fins on lower aft provide stability for the aircraft. The P-8 AGS also uses the P-8A’s Raytheon AN/APY-10 multi-mission surface search radar.Boeing has campaigned for a fleet of P-8 AGS aircraft instead of re-engining the E-8s. The Air Force’s Analysis of Alternatives (AoA) of the JSTARS platform began in March 2010 to review options for performing the JSTARS mission. An initial decision on the AOA was expected in September 2011

The P-8 is a militarized version of the 737-800 with 737-900-based wings. The airframe uses a 737-800-based fuselage that is similar to but longer than the 737-700-based C-40 Clipper. The P-8 has a strengthened fuselage and 767-400ER-style raked wingtips, instead of the blended winglets available on 737NG variants. The five operator stations (two Naval Flight Officers plus three enlisted Aviation Warfare Operators/Naval Aircrewman) are mounted in a sideways row, along the port side of the cabin. None of these crew stations have windows. One observer window is located on each side of the forward cabin.

The P-8 features the Raytheon APY-10 multi-mission surface search radar.[29] The P-8I will feature an international version of the APY-10. A short bomb bay for torpedoes and other stores opens behind the wing. The aircraft also includes six additional body fuel tanks for extended range from Marshall Aerospace; three of the tanks are located in the forward cargo compartment and three in the rear. In-flight refueling is via a receptacle on top of the forward fuselage, just aft of the cockpit.

In U.S. service, the Poseidon will be complemented by the Broad Area Maritime Surveillance UAV system, which will provide continuous surveillance. The system is expected to enter service around 2010. Around 40 UAVs based on the RQ-4 Global Hawk will be used in the program. Because of the cancellation of Lockheed Martin’s Aerial Common Sensorproject, Boeing will propose a signals intelligence variant of the P-8 to service the requirement for the U.S. Navy.

INDIA

In January 2008, Boeing proposed the P-8I, a customized export variant of the P-8A, for the Indian Navy. On 4 January 2009, India’sMinistry of Defence signed an agreement with Boeing for the supply of eight P-8Is at a total cost of US$2.1 billion. These aircraft would replace Indian Navy’s aging Tupolev Tu-142M maritime surveillance turboprops. Each aircraft has an average cost of about US$220 million. The deal makes India the first international customer of the P-8, and also marks Boeing’s first military sale to India. In October 2010, India’s Defence Acquisition Council of the Ministry of Defence approved the purchase of four additional P-8Is. In March 2011, it was reported that India was to order four additional P-8s from Boeing later in the year. India plans to order another 12 P-8Is at a later time.

The Data Link II communications technology for the P-8I was received by Boeing from Bharat Electronics Limited in April 2010. The communications system will enable exchange of tactical data and messages between Indian Navy aircraft, ships and shore establishments. Boeing will install the system during P-8I final assembly. The IFF, system from BEL was also handed over to Boeing for integration with P-8I in December 2010.

Flight testing of P-8Is began in July 2012, with deliveries planned to start in 2013. The first P-8I was handed over to an Indian naval team at the Boeing facility at Seattle on 19 December 2012. The Indian Navy is to fly it to India along with the second and third aircraft after they handed over in May and June of next year.

Indian Navy has 8 P-8I aircraft on order; deliveries began in December 2012.

Specifications (P-8A)boeingp81

General characteristics

  • Crew: Flight: 2; Mission: 7
  • Length: 129 ft 5 in (39.47 m)
  • Wingspan: 123 ft 6 in (37.64 m)
  • Height: 42 ft 1 in (12.83 m)
  • Empty weight: 138,300 lb (62,730 kg)
  • Max. takeoff weight: 189,200 lb (85,820 kg)
  • Powerplant: 2 × CFM56-7B turbofan, 27,000 lbf (120 kN) each

Performance

  • Maximum speed: 490 knots (907 km/h)
  • Cruise speed: 440 kn (815 km/h)
  • Range: 1,200 nmi (2,222 km) 4 hours on station (Anti-submarine warfare mission)
  • Service ceiling: 41,000 ft (12,496 m)

Armament

  • (5 internal and 6 external) SLAM-ER missiles, Mines and Torpedoes.

Avionics

  • Raytheon APY-10 multi-mission surface search radar
  • (Advanced Airborne Sensor surface search radar and SIGINT package to be follow on system)

COURTESY ;http://en.wikipedia.org/wiki/Boeing_P-8_Poseidon

In January 2007, after several months of intense negotiations, India and Israel signed a US$330 million deal to co-develop an all new generation of the Barak SAM, which was to be known as the Barak II. It has also been called Barak 8. They have worked out an agreement to develop and produce the long-range Barak air defence system for both the Indian and the Israeli militaries. The initial co-development funding is about US$350 million, of which IAI will finance 50 per cent. The venture is a tripartite one, between the DRDO, the Indian Navy, and IAI. The missile is referred to as the LRSAM in Indian Government literature, and will have a range of 70 km (43 mi).

The new missile, which will be based on the original Barak, is expected to feature a more advanced seeker, alongside range extensions (up to 70 km) that will move it closer to medium range naval systems like the RIM-162 Evolved Sea Sparrow or even the SM-2 Standard. The joint development offer was first made by Israel during Indian Navy Chief Admiral Arun Prakash’s visit to Tel Aviv in 2004. Israel successfully tested its improved Barak II missile on July 30, 2009. The radar system provides 360 degree coverage and the missiles can take down an incoming missile as close as 500 meters away from the ship. Each Barak system (missile container, radar, computers and installation) costs about $24 million. In November 2009 Israel signed a $1.1 billion contract to supply an upgraded tactical Barak-8 air defence system to India.

The dual pulse rocket motor for the SAM was developed by DRDO, and the prototypes were supplied to IAI for integration with IAI systems to develop the complete missile.The other variant of the LRSAM will be fielded by the Indian Air Force. Along with the Akash SAM, the LRSAM fills a longer range requirement and both types will complement each other. Each unit of the MR-SAM, would consist of a command and control center, with an acquisition radar, a guidance radar, and 3 launchers with eight missiles each. A 4-year, US$300 million System Design & Development phase to develop unique system elements and an initial tranche of the land-based missiles is estimated. The radars, C2 centers, TEL’s and missiles will be co-developed by Israel and India. In turn, IAI and its Israeli partners have agreed to transfer all relevant technologies and manufacturing capabilities to India allowing India to manufacture the LRSAM systems locally as well as support them.

In May 2010, the Barak-II missile was successfully test fired at an electronic target and met its initial objectives. The second test of the missile is to be held in India later this year. “More than 70 per cent of the content in the missile being developed with Israel would be indigenous.” DRDO chief V. K. Saraswat told The Economic Times.

Development and tests of the long-range anti-air / anti-missile

“In January 2006, India and Israel signed a $350m agreement to co-develop a new generation long-range surface-to-air missile (LR-SAM) for Indian Navy ships.”

Rafael Advanced Defence Systems and Elta Systems, a wholly owned subsidiary of IAI, were subcontracted for the Barak-8 joint development programme. Rafael provides missile interceptors, while Elta is responsible for the radar system.

The first test of Barak-8 missile took place in Israel in May 2010. The next test is planned to be conducted in Israel in 2012. The weapon qualification programme will involve eight test firings conducted in Israel and India prior to entry into service.

Components of the missile system, including the four-plane MF-STAR radars and shipboard electronic modules were delivered to India for final assembly.

Naval Barak-8 missiles will be installed on the three Project 15A Kolkata Class guided-missile destroyers under construction at the Mazagon shipyard in India. Delivery of the first frigate is scheduled for 2012, and Barak-8 missiles aboard the frigate are expected to become operational in 2013.

Four Project 15B Kolkata Class destroyers will also be armed with extended range surface-to-air missiles (ER-SAM). The extended-range missile can strike targets within the range of 100km

MF-STAR radar used on the jointly developed naval defence system

The MF-STAR radar will provide mid-course guidance updates for the missile initially after the launch from the ship. MF-STAR is a multifunction surveillance track and guidance radar for modern naval ships.

The radar uses multibeam, pulse Doppler and electronic counter-counter measures (ECCM) techniques to detect fast moving and low-RCS targets, even in complex environments / conditions and jamming environments.

The radar system provides 360° degree coverage and allows interception of incoming missile as close as 500m away from the ship. During the terminal phase, the second motor will be fired and active radar seeker will be activated to home on to the target.

Propulsion of the Israeli / Indian surface-to-air missiles

Propulsion power for the missile will be provided by a dual pulse rocket motor developed by DRDO. The prototypes were delivered to IAI for final assembly, along with other systems to produce the complete missile.

The rocket motor provides high manoeuvrability at target interception range throughout the wide envelope of the missile.

Naval barak

Naval Barak-8 is a long-range anti-air and anti-missile naval defence system being developed jointly by Israel Aerospace Industries (IAI) and the Defence Research & Development Organisation (DRDO) of India. Surface-to-air missiles (SAM) can counter attack aircraft, UAVs and incoming anti-ship missiles. The missile is expected to enter service with the Indian Navy in 2013.

In January 2006, India and Israel signed a $350m agreement to co-develop a new generation long-range surface-to-air missile (LR-SAM) for Indian Navy ships.

In April 2009, Israel signed a $1.1bn contract to deliver an upgraded Barak-8 air defence system to India. Deliveries are expected to be concluded by 2017.

Overview

The KALI is not a laser weapon as commonly believed. It emits powerful pulses of electrons (Relativistic Electron Beams- REB). Other components in the machine down the line convert the electron energy into EM Radiation, which can be adjusted to x-ray (as Flash X-Rays) or microwave (High Power Microwave) frequencies.

This has fueled hopes that the KALI could, one day be used in a High-Power Microwave gun, which could destroy incoming missiles and aircraft through soft-kill (destroying the electronic circuitry on the missile). However, weaponising such a system has many obstacles to overcome.

History

The KALI project was first mooted in 1985 by the then Director of the BARC, Dr. R. Chidambaram. Work on the Project began in 1989, being developed by the Accelerators & Pulse Power Division of the BARC. (Dr. Chidambaram was also the Scientific advisor the Prime Minister, and the Chairman of the Atomic Energy Commission). DRDO is also involved with this project. It was initially developed for industrial applications, although defence applications became clearer later.

The first accelerators had a power of ~0.4GW, which increased as later versions were developed. These were the KALI 80, KALI 200, KALI 1000, KALI 5000 and KALI 10000.

The KALI-5000 was commissioned for use in late 2004.

Design

The KALI series (KALI 80, KALI 200, KALI 1000, KALI 5000 and KALI 10000) of accelerators are described as “Single Shot Pulsed Gigawatt Electron Accelerators”. They are single shot devices, using water filled capacitors to build the charge energy. The discharge is in the range of 1GW. Initially starting with 0.4GW power, present accelerators are able to reach 40GW. Pulse time is about 60 ns.

The Microwave radiations emitted by the KALI-5000 are in the 3–5 GHz Range

The KALI-5000 is a pulsed accelerator of 1 MeV electron energy, 50-100 ns pulse time, 40kA Current and 40 GW Power level. The system is quite bulky as well, with the KALI-5000 weighing 10 tons, and the KALI-10000, weighing 26 tons. They are also very power hungry, and require a cooling tank of 12,000 liters of oil. Recharging time is also too long to make it a viable weapon in its present form.

Applications

The KALI has been put to various uses by the DRDO. The DRDO was involved in configuring the KALI for their use.

The X-rays emitted are being used in Ballistics research as an illuminator for ultrahigh speed photography by the Defence Ballistics Research Institute (DBRL) in Chandigarh. The Microwave emissions are used for EM Research.

The microwave-producing version of Kali has also been used by the DRDO scientists for testing the vulnerability of the electronic systems of the Light Combat Aircraft (LCA), which was then under development.

It has also helped in designing electrostatic shields to “harden” the LCA and missiles from microwave attack by the enemy as well as protecting satellites against deadly Electromagnetic Impulses (EMI) generated by nuclear weapons and other cosmic disturbances, which “fry” and destroy electronic circuits. Electronic components currently used in missiles can withstand fields of approx. 300 V/cm, while the fields in case of EMI attack reach thousands of V/cm.

As a Weapon

The KALI’s potential for a military role as a beam weapon has made it, in the eyes of China a threat. However, weaponisation of the KALI will take some time. The system is still under development, and efforts are being made to make it more compact, as well as improve its recharge time, which, at the present, makes it only a single use system.

There are also issues with creating a complete system, which would require development of many more components. There have been reports of placing the weaponized KALI in an Il-76 aircraft as an airborne defence system. There is also speculation of using the KALI as an Anti-satellite weapon and as a space-based weapon system, although it is unlikely that they would be implemented, given India’s stance on those issues.

                                    K-15 SLBM  The K family of missiles is a series of submarine-launched ballistic missiles (SLBM) developed by India to boost its second-strike capabilities and thus the nuclear deterrence. Information about this family of missiles has mostly been kept secret. In November 2010, India Today featured an article named “The secret ‘K’ missile family” that gave away some details about what they called as the “Black Project” which DRDO officials are covertly working on. It further stated, “The top secret indigenous “K” missiles are faster, lighter and stealthier.”

Missiles in the series

K-15 or Sagarika

Range Vs Payload for Shaurya Missile.

The Sagarika/K-15 missile (Sanskrit: सागरिका, IAST:Sāgarikā, meaning Oceanic) is the SLBM version of the land-based Shaurya missile. With a shorter range than K-4 missiles it is to be integrated with Arihant class submarine concurrently developed for the use of Indian Navy.

Sagarika/K-15 was developed at the DRDO’s missile complex in Hyderabad. The complex consists of the Defence Research and Development Laboratory (DRDL), the Advanced Systems Laboratory (ASL) and the Research Centre, Imarat (RCI).

DRDL designed and developed the missile, while the ASL provided the motors and propulsion systems. The RCI’s contribution was in avionics, including control and guidance systems and inertial navigation systems. K-15 has a range of around 700 km with 1,000 kg warhead and around 1,900 km with 180 kg warhead. This will also get help from Indian Regional Navigation Satellite System (IRNSS), expected to be ready by 2014, to ensure guaranteed national access to precision navigation. These will enable high accuracy required for precision strike.

K-4 Missile

K-4, named after former President of India Dr. APJ Abdul Kalam, is the next significant development under the K-X series by DRDO. It was covertly tested off the coast of Visakhapatnam in January, 2010. However, any detail regarding the developments in this project are confidential and this project is sometimes referred to as “BLACK PROJECT” whose existence is neither denied nor acknowledged by DRDO. While there are some reports that claim that K-4 is a submarine launched version of AGNI-V, other reports state that it is actually a SLBM Version of the Agni-III missile that is being worked on. The goal of this project is to expand the second-strike options for the country, DRDO scientists told reporters during a briefing. A total of 258 private firms and 20 DRDO laboratories were involved in this venture. The Missile is said to have two variants. One with a range of 3,500 km that is 10 m long and the other with a range of 5,000 km will be 12 m long to arm future nuclear submarines of the Arihant class. K-4 will provide India the capability to target China and Pakistan simultaneously. INS Arihant, first of the Arihant Class Submarines, will be able to carry 4 (10m long) K-4s or 12 K-15s.

K-5 Missile

K-5 missile is the SLBM version of AGNI-VI (ICBM) is allegedly under development by DRDO. And it will arm the future variants of Arihant class submarines of the Indian Navy. DRDO revealed in 2011 that it is also in the process of developing a variant of Agni missiles which will be a submarine launched solid fuel missile with a maximum range of 6,000 kilometers and a payload of one tonne. However, there is strong opacity regarding the existence of such a project.
TYPE RANGE Weight Warhead length Status
K-15 750 km 10 tonnes 1 tonne 10 m K-15/B-05 in series production. Land-based missile awaiting clearance.
K-4 3,500-5,000 km 17 tonnes 1 tonneto 2.5 tonnes(depending upon the variant) 10 m  
Air Launched 200 km 2 tonnes 500 kg 4 m Hypersonic missile project called ‘Air launched article’. It is designated to fit with Sukhoi Su-30-MKI. First prototype will be ready by 2012.
K-5 (SLBM Version of AGNI-VI) 6,000 km Unspecified 1 tonne Unspecified Under Development by DRDO

   The Sukhoi/HAL Fifth Generation Fighter Aircraft (FGFA) is a fifth-generation fighter being developed by India and Russia. It is a derivative project from the PAK FA (T-50 is the prototype) being developed for the Indian Air Force (FGFA is the official designation for the Indian version).

Two separate prototypes will be developed, one by Russia and a separate one by India. According to HAL chairman A.K. Baweja (speaking shortly after the India-Russia Inter-Governmental Committee meeting on 18 September 2008), the Russian version of the aircraft will be a single-seater, the Indian version will be a twin seater, analogous to the Su-30MKI which is a twin seat variant of the baseline Su-27. The plane is scheduled to enter series production in 2019.

Development

India will eventually spend over $25 billion to induct 166 PAK FA and 48 FGFA advanced stealth fighter aircraft. This will be in addition to the huge investments to be made in co-developing FGFA, as with the infrastructure required to base, operate and maintain such jets in India. IAF’s Air Chief Marshal Naik said that the FGFA will be a swing-role fighter with advanced avionics, super cruise, stealth to increase survivability, enhanced lethality, 360 degree situational awareness, smart weapons, data-links, high-end mission computers and the like. Along with 126 medium multi-role combat aircraft, which India plans to acquire, 270 Sukhoi-30MKIs contracted from Russia, and 220 indigenous Tejas Light Combat Aircraft, the FGFA will be the mainstay of India’s air combat fleet for the foreseeable future. This, in addition to the remaining 50 odd Mirage 2000 fighters, 61 MIG-29 SMT, and the 125 MIG-21 Bison operational till 2017, will help the IAF to reach the sanctioned strength of 44 squadrons.

The joint-venture borrows heavily from the success of the Brahmos project. Russia and India had agreed in early 2007 to jointly study and develop a Fifth Generation Fighter Aircraft Programme (FGFA). On October 27, 2007, Asia Times quoted Sukhoi’s director, Mikhail Pogosyan, “We will share the funding, engineering and intellectual property in a 50-50 proportion.” The Indian version, according to the deal, will be different from the Russian version and specific to Indian requirements. While the Russian version will be a single-pilot fighter, the Indian variant will have single and twin-seat configuration based on its operational doctrine which calls for greater radius of combat operations. The wings and control surfaces need to be reworked for the FGFA. Although, development work has yet to begin, the Russian side has expressed optimism that a test article will be ready for its maiden flight by 2009, one year after PAK FA scheduled maiden flight and induction into service by 2015.

By February 2009, as per Sukhoi General Director Mikhail Pogosyan, India will initially get the same PAK FA fighter of Russia and the only difference will be the software.

In 2011, it was reported that IAF will induct 148 single seat as well as 66 dual seat variants of the FGFA. IAF plans to induct the first lot of aircraft by 2017.

Design

Although there is no reliable information about the PAK FA and FGFA specifications yet, it is known from interviews with people in the Russian Air Force that it will be stealthy, have the ability to supercruise, be outfitted with the next generation of air-to-air, air-to-surface, and air-to-ship missiles, and incorporate an AESA radar. The FGFA will use on its first flights 2 Saturn 117S engines (about 14.5 ton thrust each). The 117S is an advanced version of the AL-31F, but built with the experience gained in the AL-41F program. The AL-41F powered the Mikoyan MFI fighter (Mikoyan Project 1.44). Later versions of the PAK FA will use a completely new engine (17.5 ton thrust each), developed by NPO Saturn or FGUP MMPP Salyut.

Three Russian companies will compete to provide the engines with the final version to be delivered in 2015-2016.

HAL negotiated successfully to get a 25 per cent share of design and development work in the FGFA programme. HAL’s work share will include critical software including the mission computer, navigation systems, most of the cockpit displays, the counter measure dispensing (CMD) systems and modifying Sukhoi’s single-seat prototype into the twin-seat fighter as per the requirement of the Indian Air Force (IAF).

Russian expertise in titanium structures will be complemented by India’s experience in composites like in the fuselage. A total of 500 aircraft are planned with option for further aircraft. Russian Air Force will have 200 single seated and 50 twin-seated PAK FAs while Indian Air Force will get 166 single seated and 48 twin-seated FGFAs. At this stage, the Sukhoi holding is expected to carry out 80% of the work involved. Under the project terms, single-seat fighters will be assembled in Russia, while Hindustan Aeronautics will assemble two-seaters.

According to HAL chairman A.K. Baweja on 16 September 2008, HAL will be contributing largely to composites, cockpits and avionics. HAL is working to enter into a joint development mechanism with Russia for the evolution of the FGFA engine as an upward derivative of the AL-37. Speaking to Flight magazine, United Aircraft chief Mikhail Pogosyan said India is giving engineering inputs covering latest airframe design, Hi-Tech software development and other systems.

PAK FA and FGFA

The difference between PAK FA and the FGFA will be similar to that between Su-30M and Su-30MKI. Su-30M is a standard Russian version of a plane, whereas the Su-30MKI (MKI stands for “Modernizirovannyi Kommercheskiy Indiski” meaning “Modernized Commercial India”) was jointly-developed with India’s Hindustan Aeronautics Limited for the Indian Air Force. The Su-30MKI includes 2.5D Thrust Vectoring Control (TVC) and canards. It is equipped with a multi-national avionics complex sourced from India, Israel, Russia and France. Further the FGFA will be predominantly using weapons of Indian origin such as Astra, a Beyond Visual Range missile (BVR) being developed by India, although in keeping with the Russian BVR doctrine of using a vast variety of different missiles for versatility and unpredictability to countermeasures, it can be expected to have compatibility with many different missile types. Ashok Baweja stated that “The Indian FGFA is significantly different from the Russian PAK FA because a second pilot means the addition of another dimension, development of wings and control surfaces.”

The FGFA may also include systems developed by third parties.

The completed joint Indian/Russian versions of the single seat or two seat fighters will differ from the current flying prototypes through the addition of stealth, supercruise, sensors, networking, and combat avionics for a total of 43 improvements.

Specifications (PAK FA and FGFA – projected)

 characteristics

  • Crew: 2 (pilot)
  • Length: 22.6 m ()
  • Wingspan: 14.2 m (46 ft 7 in)
  • Height: 5.9 m ()
  • Wing area: 78.8 m² (848 ft²)
  • Empty weight: 18,500 kg (40,786 lb)
  • Loaded weight: 26,000 kg (57,320 lb)
  • Useful load: 7,500 kg (16,535 lb)
  • Max. takeoff weight: 34,000 kg ()
  • Powerplant: 2 × Saturn-Lyulka AL-41F turbofan
    • Dry thrust: 96.1 kN (9,800 kgf, 21,605 lbf) each
    • Thrust with afterburner: 152 kN (15,500 kgf, 34,172 lbf) each

Performance

  • Maximum speed: 2,100 – 2,500 km/h (Mach 2+)  (1,305 mph+)
  • g-limits: (10-11 g)
  • Cruise speed: 1,850 – 2,100 km/h (1,150 – 1,300 mph)
  • Combat radius: 1,500 km  ()
  • Ferry range: 5,500 km (3,400 mi)
  • Service ceiling: 20,000 m (65,617 ft)
  • Rate of climb: 350 m/s (68,898 ft/min)
  • Wing loading: 330 (normal) – 470 (maximum) kg/m2 (67 (normal) – 96 (maximum) lb/ft2)
  • Thrust/weight: 1.19
  • Runway: 350 m (1,148 ft)
  • Endurance: 3.3 hrs (198 mins)

Armament

  • Guns: 2× 30 mm internal cannon
  • Hardpoints: 16 total, 8 internal, 8 on wings.

Avionics

  • Radar: N050 BRLS AESA/PESA Radar (Enhancement of IRBIS-E) on SU-35
    • Frequency: X (8 – 12 GHz)
    • Diameter: 0.7 m (2 ft 4 in)
    • Targets: 32 tracked, 8 engaged
    • Range: > 400 km (248 mi)
      • EPR: 3 m² (32.3 ft²) at 400 km (248 mi)
      • RCS: 3 m ² to 400 km, 1 m ² to 300 km, 0.5 m ² to 240 km, 0.1m ² to 165 km, 0.01M ² to 90 km.
      • Azimuth: 240 ° (± 120 °)
    • Power: 5,000 W
    • Weight: 65 to 80 kg (143 to 176 lb)                                                                                                                                                                                                                                                                                                                                                  courtesy :- wikipedia.org
Role Military UAV
Manufacturer ADE, DRDO
Designer ADE, DRDO
First flight 1995
Status Production
Primary user Indian Army
Produced 12+
Unit cost $4.47million

The DRDO Nishant is an Unmanned Aerial Vehicle (UAV) developed by India’s ADE (Aeronautical Development Establishment) a branch of DRDO for the Indian Armed Forces. The Nishant UAV is primarily tasked with intelligence gathering over enemy territory and also forreconnaissance, training, surveillance, target designation, artillery fire correction, damage assessment, ELINT and SIGINT. The UAV has an endurance of 4 h 30 min. Nishant has completed development phase and user trials.

The 380 kg (840 lb) Nishant UAV requires rail-launching from a hydro-pneumatic launcher and recovered by a Parachute System. Launches at a velocity of 45 m/s are carried out in 0.6 second with 100 kW power and subsequent launches can be carried out in intervals of 20 minutes. The Mobile Hydro-Pneumatic Launcher (MHPL) system mounted on a Tatra truck weighs 14,000 kg (31,000 lb) and boasts of a life cycle of 1000 launches before requiring overhaul. Nishant is one of the few UAVs in the world in its weight-class capable of being catapult-launched and recovered by using parachute, thus eliminating the need for a runway as in case of conventional take-off and landing with wheels.

Development

To meet the Army’s operational requirement of an RPV it was decided in September 1988 that the Defence Research and Development Organisation would undertake the indigenous development of the UAV. The General Staff Qualitative Requirement (GSQR) was finalised by the Army in May 1990. The Nishant RPV made its first test flight in 1995. In July 1999, for the first time the Indian army deployed its new Nishant UAV system in the fight against guerilla forces backed by Pakistan in Kashmir. Nishant, which had been developed for battlefield surveillance and reconnaissance needs of the Indian Army, was test flown again in early 2002. The indigenous Unmanned Air Vehicle (UAV) Nishant developed by ADE,DRDO had completed its 100th flight by June 15, 2002. The Indian Army has placed an order for 12 Nishant UAVs along with ground support systems. Nishant Unmanned Aerial Vehicle (UAV) developed by DRDO for Indian Army was successfully flight tested near Kolar on 20 June 2008. Nishant has completed development phase and user trials. The present flight tests are pre confirmatory trials before induction into services.

Test flight

On Sunday 5 April 2009 DRDO launched a test flight of the Nishant UAV. The main goal was to test the performance of the Wankel engine used on the UAV. An abandoned World War II runway at a village near Kolar played host to the first ever flight of this indigenous rotary engine-powered UAV. The flight took off on early Sunday morning and climbed to an altitude of 1.8 km (5,900 ft) effortlessly before cruising for a duration of 35 minutes. The air vehicle was recovered safely at the intended place at a dried-up lake, after a total flight duration of 40 min. The engine, a Wankel rotary type, was the developmental project of the DRDO and was jointly designed and developed by NAL, a CSIR laboratory, VRDE, Ahmednagar and ADE, Bangalore. The provisional flight clearance for the first indigenous prototype engine was given by the certifying agency, RCMA. The engine was cleared for flight after rigorous ground endurance test runs. The Wankel engine weighs about 30 kg (70 lb), and this engine type is known for its high power-to-weight ratio in a single rotor category.

DRDO was satisfied with the test results. The performance of the engine during the flight met the requirements of the first flight of a engine in the air vehicle. This 55 hp indigenous engine is expected to replace the present imported engine of Nishant. The critical core engine, including the special cylinder composite nickel–silicon carbide coating and special aluminium alloy castings, was designed and developed by NAL. VRDE developed engine peripherals such as the ignition and fuel systems and ADE developed flight testing. The reconnaissance UAV, which has completed its user trials with the Indian Army, is expected to be handed over to the army shortly.

Nishant UAV again underwent crucial confirmatory user trials at Pokhran in April 2010. The trials began April 20 and were supposed to last for one week. A senior Army official at Pokhran said the trials are moving forward in a very satisfactory manner. “We are checking three crucial parameters: video quality, tracking ability and fall of gunshot [missed distance after firing]. These input performances are critical to our operations in the forward areas,” the official said. DRDO has delivered the first four UAVs to the Indian Army at a cost of 800 million INR ($17.9 million).

According to the Times Of India, two UAVs crash-landed in Jaisalmer district near the India-Pak border due to change in wind direction on Apr 28th and Apr 30th. Confirming the news, a DRDO official said, “The user trials were going on and during the flight there were some technical snags owing to which the craft was landed using parachutes.” He said, “But the landing was done safely and no one was hurt in the process. Though before our officials could reach to get the craft back, villagers damaged the aircraft and took away some equipment.”

On 3rd Feb 2011 Nishant UAV has successfully completed confirmatory trials conducted by the Indian Army at Pokhran, Rajasthan

Features

  • Day/night capability training vehicle
  • Battlefield reconnaissance & surveillance,
  • Target tracking and localization
  • Artillery fire correction
  • All terrain mobility
  • Target designation (using integral laser target designator)
  • Endurance: 4 h 30 min

Ground support systems

  • Mobile hydropneumatic launcher (MHPL)
  • Ground control station (GCS)
  • Antenna vehicle/Ground Data Terminal(GDT)
  • Avionics preparation vehicle(APV)
  • Mechanical maintenance vehicle
  • UAV transportation vehicle
  • Power supply vehicle

characteristics

  • Crew: None
  • Payload: 45 kg
  • Length: 4.63 m (15.2 ft)
  • Wingspan: 6.57 m (21.6 ft)
  • Empty weight: 380 kg (840 lb)
  • Powerplant: 1 × RE-2-21-P or RE-4-37-P, ()

Performance

  • Maximum speed: 185 km/h
  • Cruise speed: 125 km/h to 150 km/h
  • Range: 160 km (100 mi)
  • Service ceiling: 3,600 m (up to 11,800 ft)

Launch & recovery

  • Launch: Mobile hydropneumatic launcher (MHPL) system
  • Recovery: Parachute + landing bags

courtesy:- wikipedia.org

 

DRDO rather than starting all over again the Arjun Mk.2 will have the same design of Arjun Mk.1, but major changes are planned for the new generation variant of Arjun Tank to keep up with the new technological changes which are been incorporated in the MBT’s world over.

Arjun Mk.2 will have Battle Field Management System (BFMS) which will enable the tank to get feed from UAV‘s and Helicopters, which then enable the Arjun Mk.2 tank crew much aware of their surroundings and better understanding of the battle zone, this will lead to improvement in coordinating with other Friendly tanks in the zone and also avoid Friendly kills, it will also give information regarding enemy tank movement along with their troops and help navigate terrain in the battle zone.

Self-diagnostic system (SDS) will also be added to Arjun Mk.2 which is like a health monitoring system. it will not only tell the tank crew if it is having any problem but also point out the trouble area , it is also important when Tank has taken multiple hits from different position and from different ammunition after a self-diagnose Tank crew will know exact damage inflicted on the Tank .

Arjun Mk.2 will get a new efficient 1500bhp engine which has been in development by DRDO in India its self, they are reports that a Indian Private industry is also working with DRDO on the engine development, currently Arjun Mk.1 is powered by German supplied 1400bhp engine which is quite old in design and technical parameters but still a powerful and respected engine in the world.

NERA (non-explosive reactive armor) will be added to Arjun Mk.2 this will give the tank additional protection against anti-tank munitions, unlike ERA, NERA will enable tank to take multiple hits anti-tank munitions, but also increase the weight of Arjun Mk.2 to 60 tons from its current weight (Arjun Mk.1) of 58 tons.

It is much likely that Arjun Mk.2 will also spot Air-conditioning system for the crew, which will be powered from an APU which will draw its power from the Main engine of the Tank; this will enable the tank crew to operate in higher temperature of desert heat without any discomfort to the tank crew, Arjun Mk.1 already has hardened electronics that function perfectly even in the Rajasthan summer without requiring any Air-conditioning system

The Arjun Mk.2 is to undergo summer and winter trails in 2012. If the tests are satisfactory, then the tank will be able to begin production in 2014.

Specifications:
Weight: 60 tons
Length: 10.638 meters
Width: 3.864 meters
Height: 2.32 meters
Crew: 4 (commander, gunner, loader and driver)

Armor: steel/composite Kanchan armour and NERA
Primary weapon: 120 mm rifled tank gun
Secondary weapon: HCB 12.7 mm AA MG, Mag 7.62 mm Tk715 coaxial MG
Engine: DRDO 1,500hp
Power/weight: 25 hp/ton
Operational range: 435 kilometers
Speed: 75 km/h (45 mph) Road, 42 km/h (25 mph) Cross country

Cost: $13 million est.

FMBT

The Indian Army wants the tank to have an Identification Friend or Foe (IFF) system “to obviate chances of own tanks firing at each other in battle”, and a whole new reliable and secure mobile communication system capable of data transmission, audio and video conference. Protection in the form of soft-kill system requires IR detectors, laser warning, radar warning and devices to instantaneously integrate these signals and control a countermeasure suite. Such systems are threat specific so all would have to be carried on a vehicle to gain protection against more than one part of the EM threat spectrum.

For mobility, in order to achieve ‘extraordinary’ acceleration, the Army observes that it is necessary to seek a compact power pack in the form of a gas turbine. The Army wants an active suspension system with sensors, control units, and a hydraulic power source in combination, to automatically alter the suspension characteristics to more closely match the speed of the vehicle and the terrain profile, especially in Indian terrain conditions.

The Army says it wants a high-performance armour system on its FMBT with advanced materials incorporating the following qualities A. Reduced penetration by most lethal weapons, B. Elimination of parasitic mass leading to a weight reduction, C. Excellent corrosion resistance, D. Inherent thermal and acoustic insulation properties.